COVID-19 Exposure Assessment Tool (CEAT): Exposure quantification based on ventilation, infection prevalence, group characteristics, and behavior

Leave a Reply

You must be logged in to view and post comments.

The coronavirus disease 2019 (COVID-19) Exposure Assessment Tool (CEAT) allows users to compare respiratory relative risk to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) for various scenarios, providing understanding of how combinations of protective measures affect risk. CEAT incorporates mechanistic, stochastic, and epidemiological factors including the (i) emission rate of virus, (ii) viral aerosol degradation and removal, (iii) duration of activity/exposure, (iv) inhalation rates, (v) ventilation rates (indoors/outdoors), (vi) volume of indoor space, (vii) filtration, (viii) mask use and effectiveness, (ix) distance between people (taking into account both near-field and far-field effects of proximity), (x) group size, (xi) current infection rates by variant, (xii) prevalence of infection and immunity in the community, (xiii) vaccination rates, and (xiv) implementation of COVID-19 testing procedures. CEAT applied to published studies of COVID-19 transmission events demonstrates the model’s accuracy. We also show how health and safety professionals at NASA Ames Research Center used CEAT to manage potential risks posed by SARS-CoV-2 exposures.

Resources cited in this publication

K. A. Prather, L. C. Marr, R. T. Schooley, M. A. McDiarmid, M. E. Wilson, D. K. Milton, Airborne transmission of SARS-CoV-2. Science 370, 303–304 (2020).
O. Bargain, U. Aminjonov, Trust and compliance to public health policies in times of COVID-19. J. Public Econ. 192, 104316 (2020).
C. R. Wells, J. P. Townsend, A. Pandey, S. M. Moghadas, G. Krieger, B. Singer, R. H. McDonald, M. C. Fitzpatrick, A. P. Galvani, Optimal COVID-19 quarantine and testing strategies. Nat. Commun. 12, 356 (2021).
CDC, “Community, work, and school” (Centers for Disease Control and Prevention, 2020); www.cdc.gov/coronavirus/2019-
CDC, “Interim Guidance for Managing Healthcare Personnel with SARS-CoV-2 Infection or Exposure to SARS-CoV-2” (Centers for Disease Control and Prevention, 2020); www.cdc.gov/coronavirus/2019-ncov/hcp/guidance-risk-assesment-hcp.html.
CDC, “Isolation and Precautions for People with COVID-19” (Centers for Disease Control and Prevention, 2022); www.cdc.gov/coronavirus/2019-ncov/your-health/quarantine-isolation.html.
CDC, “Travel” (Centers for Disease Control and Prevention, 2022); www.cdc.gov/coronavirus/2019-ncov/travelers/index.html.
G. N. Sze To, C. Y. H. Chao, Review and comparison between the Wells–Riley and dose-response approaches to risk assessment of infectious respiratory diseases. Indoor Air 20, 2–16 (2010).
S. L. Miller, W. W. Nazaroff, J. L. Jimenez, A. Boerstra, G. Buonanno, S. J. Dancer, J. Kurnitski, L. C. Marr, L. Morawska, C. Noakes, Transmission of SARS-CoV-2 by inhalation of respiratory aerosol in the Skagit Valley Chorale superspreading event. Indoor Air 31, 314–323 (2021).
CIRES, “COVID-19 airborne transmission tool available” (CIRES, 2020); https://cires.colorado.edu/news/covid-19-airborne-transmission-tool-available.
M. Z. Bazant, J. W. M. Bush, A guideline to limit indoor airborne transmission of COVID-19. Proc. Natl. Acad. Sci. U.S.A. 118, e2018995118 (2021).
K. Khan, J. W. M. Bush, M. Z. Bazant, “COVID-19 Indoor Safety Guideline” (2021); https://indoor-covid-safety.herokuapp.com/.
Z. Peng, A. L. P. Rojas, E. Kropff, W. Bahnfleth, G. Buonanno, S. J. Dancer, J. Kurnitski, Y. Li, M. G. L. C. Loomans, L. C. Marr, L. Morawska, W. Nazaroff, C. Noakes, X. Querol, C. Sekhar, R. Tellier, T. Greenhalgh, L. Bourouiba, A. Boerstra, J. W. Tang, S. L. Miller, J. L. Jimenez, Practical indicators for risk of airborne transmission in shared indoor environments and their application to COVID-19 outbreaks. Environ. Sci. Technol. 56, 1125–1137 (2022).
H. Parhizkar, K. G. Van Den Wymelenberg, C. N. Haas, R. L. Corsi, A quantitative risk estimation platform for indoor aerosol transmission of COVID-19. Risk Anal. 10.1111/risa.13844.
Safe Air Spaces, “SAFEAIRSPACES COVID-19 Aerosol Relative Risk Estimator” (Safe Air Spaces, 2021); https://safeairspaces.com/safeairspaces-estimator.
J. Wagner, T. L. Sparks, S. Miller, W. Chen, J. M. Macher, J. M. Waldman, Modeling the impacts of physical distancing and other exposure determinants on aerosol transmission. J. Occup. Environ. Hyg. 18, 495–509 (2021).
A. Chande, S. Lee, M. Harris, Q. Nguyen, S. J. Beckett, T. Hilley, C. Andris, J. S. Weitz, Real-time, interactive website for US-county-level COVID-19 event risk assessment. Nat. Hum. Behav. 4, 1313–1319 (2020).
Harvard IQSS, “CovidU” (Harvard IQSS, 2020); https://harvard-covid-model.herokuapp.com/.
A. Fabregat, F. Gisbert, A. Vernet, S. Dutta, K. Mittal, J. Pallarès, Direct numerical simulation of the turbulent flow generated during a violent expiratory event. Phys. Fluids 33, 035122 (2021).
X. Li, D. Lester, G. Rosengarten, C. Aboltins, M. Patel, I. Cole, A spatiotemporally resolved infection risk model for airborne transmission of COVID-19 variants in indoor spaces. Sci. Total Environ. 812, 152592 (2022).
U.S. EPA, “Guidelines for human exposure assessment” (U.S. Environmental Protection Agency, 2015); www.epa.gov/risk/guidelines-human-exposure-assessment.
B. L. Laube, H. M. Janssens, F. H. C. de Jongh, S. G. Devadason, R. Dhand, P. Diot, M. L. Everard, I. Horvath, P. Navalesi, T. Voshaar, H. Chrystyn, What the pulmonary specialist should know about the new inhalation therapies. Eur. Respir. J. 37, 1308–1417 (2011).
S. N. Rudnick, D. K. Milton, Risk of indoor airborne infection transmission estimated from carbon dioxide concentration. Indoor Air 13, 237–245 (2003).
L. Hamner, P. Dubbel, I. Capron, A. Ross, A. Jordan, J. Lee, J. Lynn, A. Ball, S. Narwal, S. Russell, D. Patrick, H. Leibrand, High SARS-CoV-2 attack rate following exposure at a choir practice — Skagit County, Washington, March 2020. MMWR Morb. Mortal. Wkl.y Rep. 69, 606–610 (2020).
S. Jang, S. H. Han, J.-Y. Rhee, Cluster of coronavirus disease associated with fitness dance classes, South Korea. Emerg. Infect. Dis. 26, 1917–1920 (2020).
U.S. OSHA, “Guidance on preparing workplaces for COVID-19” (U.S. OSHA, 2020); www.osha.gov/sites/default/files/publications/osha3990.pdf.
H. Qian, T. Miao, L. Liu, X. Zheng, D. Luo, Y. Li, Indoor transmission of SARS-CoV-2. Indoor Air 31, 639–645 (2021).
M. Nicas, The near field/far field (two box) model with a constant contaminant emission rate, in Mathematical Models for Estimating Occupational Exposure to Chemicals, C. B. Keil, C. E. Simmons, T. R. Anthony, Eds. (American Industrial Hygiene Association, ed. 2, 2009), pp. 47–52.
A. Venkatram, J. Weil, Modeling turbulent transport of aerosols inside rooms using eddy diffusivity. Indoor Air 31, 1886–1895 (2021).
T. Foat, J. Drodge, J. Nally, S. Parker, A relationship for the diffusion coefficient in eddy diffusion based indoor dispersion modelling. Build. Environ. 169, 106591 (2020).
M. Nicas, “Estimating exposure for on-site worker health risk estimates” (AQMD, 2014); www.aqmd.gov/home/rules-compliance/compliance/vocs/exempts/toxic-symp.
J. M. Stockie, The Mathematics of atmospheric dispersion modeling. SIAM Rev. 53, 349–372 (2011).
M. Kriegel, A. Hartmann, U. Buchholz, J. Seifried, S. Baumgarte, P. Gastmeier, SARS-CoV-2 aerosol transmission indoors: A closer look at viral load, infectivity, the effectiveness of preventive measures and a simple approach for practical recommendations. Int. J. Environ. Res. Public Health 19, 220 (2021).
N. Charlotte, High rate of SARS-CoV-2 transmission due to choir practice in France at the beginning of the COVID-19 pandemic. J. Voice S0892-1997, 30452–30455 (2020).
CDC, “COVID data tracker” (Centers for Disease Control and Prevention, 2020); https://covid.cdc.gov/covid-data-tracker.
State of California, “Tracking COVID-19 in California” (Official California State Government Website, 2020); https://covid19.ca.gov/state-dashboard/.
CDC, “Scientific Brief: SARS-CoV-2 Transmission” (Centers for Disease Control and Prevention, 2020); www.cdc.gov/coronavirus/2019-ncov/science/science-briefs/sars-cov-2-transmission.html.
NIPH, “Preliminary findings from study after Christmas party in Oslo” (Norwegian Institute of Public Health, 2021); www.fhi.no/en/archive/covid-19-archive/covid-19—archived-news-2021/des2/preliminary-findings-from-outbreak-investigation-after-christmas-party-in-o/.
K. Doyle, R. A. Teran, J. Reefhuis, J. L. Kerins, X. Qiu, S. J. Green, H. Choi, S. A. Madni, N. Kamal, E. Landon, R. C. Albert, M. Pacilli, L. E. Furtado, M. K. Hayden, K. J. Kunstman, C. Bethel, L. Megger, M. J. Fricchione, I. Ghinai, Multiple variants of SARS-CoV-2 in a university outbreak after spring break – Chicago, Illinois, March-May 2021. MMWR Morb. Mortal. Wkly Rep. 70, 1195–1200 (2021).
R. A. Teran, COVID-19 outbreak among a university’s men’s and women’s soccer teams — Chicago, Illinois, July–August 2020. MMWR Morb. Mortal. Wkly. Rep. 69, 606–610 (2020).
E. Brooks-Pollock, H. Christensen, A. Trickey, G. Hemani, E. Nixon, A. C. Thomas, K. Turner, A. Finn, M. Hickman, C. Relton, L. Danon, High COVID-19 transmission potential associated with re-opening universities can be mitigated with layered interventions. Nat. Commun. 12, 5017 (2021).
B. Phillips, D. T. Browne, M. Anand, C. T. Bauch, Model-based projections for COVID-19 outbreak size and student-days lost to closure in Ontario childcare centres and primary schools. Sci. Rep. 11, 6402 (2021).
G. F. Miller, B. Greening, K. L. Rice, A. Arifkhanova, M. I. Meltzer, F. Coronado, Modeling the transmission of COVID-19: Impact of mitigation strategies in prekindergarten-grade 12 public schools, United States, 2021. J. Public Health Manag. Pract. 28, 25–35 (2022).
C. M. Whaley, J. Cantor, M. Pera, A. B. Jena, Assessing the association between social gatherings and COVID-19 risk using birthdays. JAMA Intern. Med. 181, 1090–1099 (2021).
The White House, “Executive order on requiring coronavirus disease 2019 vaccination for federal employees” (The White House, 2021); www.whitehouse.gov/briefing-room/presidential-actions/2021/09/09/executive-order-on-requiring-coronavirus-disease-2019-vaccination-for-federal-employees/.
J. T. Brooks, J. C. Butler, Effectiveness of mask wearing to control community spread of SARS-CoV-2. JAMA 325, 998–999 (2021).
J. Howard, A. Huang, Z. Li, Z. Tufekci, V. Zdimal, H.-M. van der Westhuizen, A. von Delft, A. Price, L. Fridman, L.-H. Tang, V. Tang, G. L. Watson, C. E. Bax, R. Shaikh, F. Questier, D. Hernandez, L. F. Chu, C. M. Ramirez, A. W. Rimoin, An evidence review of face masks against COVID-19. Proc. Natl. Acad. Sci. U.S.A. 118, e2014564118 (2021).
Y. Li, G. M. Leung, J. W. Tang, X. Yang, C. Y. H. Chao, J. Z. Lin, J. W. Lu, P. V. Nielsen, J. Niu, H. Qian, A. C. Sleigh, H.-J. J. Su, J. Sundell, T. W. Wong, P. L. Yuen, Role of ventilation in airborne transmission of infectious agents in the built environment – A multidisciplinary systematic review. Indoor Air 17, 2–18 (2007).
D. Vernez, S. Schwarz, J.-J. Sauvain, C. Petignat, G. Suarez, Probable aerosol transmission of SARS-CoV-2 in a poorly ventilated courtroom. Indoor Air 31, 1776–1785 (2021).
S. Ratnesar-Shumate, G. Williams, B. Green, M. Krause, B. Holland, S. Wood, J. Bohannon, J. Boydston, D. Freeburger, I. Hooper, K. Beck, J. Yeager, L. A. Altamura, J. Biryukov, J. Yolitz, M. Schuit, V. Wahl, M. Hevey, P. Dabisch, Simulated sunlight rapidly inactivates SARS-CoV-2 on surfaces. J. Infect. Dis. 222, 214–222 (2020).
D. S. Khoury, D. Cromer, A. Reynaldi, T. E. Schlub, A. K. Wheatley, J. A. Juno, K. Subbarao, S. J. Kent, J. A. Triccas, M. P. Davenport, Neutralizing antibody levels are highly predictive of immune protection from symptomatic SARS-CoV-2 infection. Nat. Med. 27, 1205–1211 (2021).
P. H. Reinke, C. B. Keil, Well-mixed box model, in Mathematical Models for Estimating Occupational Exposure to Chemicals, C. B. Keil, C. E. Simmons, T. R. Anthony, Eds. (American Industrial Hygiene Association, ed. 2, 2009), pp. 23–31.
T. R. Anthony, Computational fluid dynamics, in Mathematical Models for Estimating Occupational Exposure to Chemicals, C. B. Keil, C. E. Simmons, T. R. Anthony, Eds. (American Industrial Hygiene Association, ed. 2, 2009), pp. 137–150.
P. Zannetti, Air Pollution Modeling: Theories, Computational Methods and Available Software (Springer, ed. 1990, 2013).
W. S. Dols, B. J. Polidoro, “CONTAM user guide and program documentation version 3.2” (NIST TN 1887, National Institute of Standards and Technology, 2015), p. NIST TN 1887, 10.6028/NIST.TN.1887.
W. S. Dols, B. J. Polidoro, D. Poppendieck, S. J. Emmerich, “A tool to model the Fate and Transport of Indoor Microbiological Aerosols (FaTIMA)” (NIST TN 2095, National Institute of Standards and Technology, 2020), p. NIST TN 2095, 10.6028/NIST.TN.2095.
M. Nicas, The near field/far field model with constant application of chemical mass and exponentially decreasing emission of the mass applied. J. Occup. Environ. Hyg. 13, 519–528 (2016).
P. E. Baldwin, A. D. Maynard, A survey of wind speeds in indoor workplaces. Ann. Occup. Hyg. 42, 303–313 (1998).
K.-C. Cheng, V. Acevedo-Bolton, R.-T. Jiang, N. E. Klepeis, W. R. Ott, O. B. Fringer, L. M. Hildemann, Modeling exposure close to air pollution sources in naturally ventilated residences: Association of turbulent diffusion coefficient with air change rate. Environ. Sci. Technol. 45, 4016–4022 (2011).
V. Acevedo-Bolton, K.-C. Cheng, R.-T. Jiang, W. R. Ott, N. E. Klepeis, L. M. Hildemann, Measurement of the proximity effect for indoor air pollutant sources in two homes. J. Environ. Monit. 14, 94–104 (2012).
K.-C. Cheng, V. Acevedo-Bolton, R.-T. Jiang, N. E. Klepeis, W. R. Ott, P. K. Kitanidis, L. M. Hildemann, Stochastic modeling of short-term exposure close to an air pollution source in a naturally ventilated room: An autocorrelated random walk method. J. Expo. Sci. Environ. Epidemiol. 24, 311–318 (2014).
Y. Zhang, S. Banerjee, R. Yang, C. Lungu, G. Ramachandran, Bayesian modeling of exposure and airflow using two-zone models. Ann. Occup. Hyg. 53, 409–424 (2009).
M. Nicas, M. J. Plisko, J. W. Spencer, Estimating benzene exposure at a solvent parts washer. J. Occup. Environ. Hyg. 3, 284–291 (2006).
V. Illingworth, The Penguin Dictionary of Physics (Penguin Books, ed. 3, 2001).
M. Levine-Tiefenbrun, I. Yelin, R. Katz, E. Herzel, Z. Golan, L. Schreiber, T. Wolf, V. Nadler, A. Ben-Tov, J. Kuint, S. Gazit, T. Patalon, G. Chodick, R. Kishony, Initial report of decreased SARS-CoV-2 viral load after inoculation with the BNT162b2 vaccine. Nat. Med. 27, 790–792 (2021).
G. Buonanno, L. Morawska, L. Stabile, Quantitative assessment of the risk of airborne transmission of SARS-CoV-2 infection: Prospective and retrospective applications. Environ. Int. 145, 106112 (2020).
Y. Araf, F. Akter, Y.-D. Tang, R. Fatemi, M. S. A. Parvez, C. Zheng, M. G. Hossain, Omicron variant of SARS-CoV-2: Genomics, transmissibility, and responses to current COVID-19 vaccines. J. Med. Virol. 94, 1825–1832 (2022).
ASHRAE, Ed., ANSI/ASHRAE Standard 62.1-2019 (ASHRAE, 2019).
Y. Shen, C. Li, H. Dong, Z. Wang, L. Martinez, Z. Sun, A. Handel, Z. Chen, E. Chen, M. H. Ebell, F. Wang, B. Yi, H. Wang, X. Wang, A. Wang, B. Chen, Y. Qi, L. Liang, Y. Li, F. Ling, J. Chen, G. Xu, Community outbreak investigation of SARS-CoV-2 transmission among bus riders in Eastern China. JAMA Intern. Med. 180, 1665–1671 (2020).
K. Luo, Z. Lei, Z. Hai, S. Xiao, J. Rui, H. Yang, X. Jing, H. Wang, Z. Xie, P. Luo, W. Li, Q. Li, H. Tan, Z. Xu, Y. Yang, S. Hu, T. Chen, Transmission of SARS-CoV-2 in public transportation vehicles: A case study in Hunan Province, China. Open Forum Infect. Dis. 7, ofaa430 (2020).
D. Hijnen, A. V. Marzano, K. Eyerich, C. GeurtsvanKessel, A. M. Giménez-Arnau, P. Joly, C. Vestergaard, M. Sticherling, E. Schmidt, SARS-CoV-2 transmission from presymptomatic meeting attendee, Germany. Emerg Infect. Dis. 26, 1935–1937 (2020).
N. C. Khanh, P. Q. Thai, H.-L. Quach, N.-A. H. Thi, P. C. Dinh, T. N. Duong, L. T. Q. Mai, N. D. Nghia, T. A. Tu, L. N. Quang, T. D. Quang, T.-T. Nguyen, F. Vogt, D. D. Anh, Transmission of SARS-CoV 2 during long-haul flight. Emerg. Infect. Dis. 26, 2617–2624 (2020).
A. Brlek, Š. Vidovič, S. Vuzem, K. Turk, Z. Simonović, Possible indirect transmission of COVID-19 at a squash court, Slovenia, March 2020: Case report. Epidemiol. Infect. 148, e120 (2020).
J.-K. Park, Y. Xiao, M. D. Ramuta, L. A. Rosas, S. Fong, A. M. Matthews, A. D. Freeman, M. A. Gouzoulis, N. A. Batchenkova, X. Yang, K. Scherler, L. Qi, S. Reed, R. Athota, L. Czajkowski, A. Han, D. M. Morens, K.-A. Walters, M. J. Memoli, J. C. Kash, J. K. Taubenberger, Pre-existing immunity to influenza virus hemagglutinin stalk might drive selection for antibody-escape mutant viruses in a human challenge model. Nat. Med. 26, 1240–1246 (2020).
D. Atrubin, M. Wiese, B. Bohinc, An outbreak of COVID-19 associated with a recreational hockey game — Florida, June 2020. MMWR Morb. Mortal. Wkly. Rep. 69, 1492–1493 (2020).
K. S. Kwon, J. I. Park, Y. J. Park, D. M. Jung, K. W. Ryu, J. H. Lee, Evidence of long-distance droplet transmission of SARS-CoV-2 by direct air flow in a restaurant in Korea. J. Korean Med. Sci. 35, e415 (2020).

Leave a Reply

Subscribe to Comments RSS feed