Modeling of dispersion of aerosolized airborne pathogens exhaled in indoor spaces

Leave a Reply

You must be logged in to view and post comments.

Since the beginning of the COVID-19 pandemic, there has been a lack of data to quantify the role played by breathing-out of pathogens in the spread of SARS-Cov-2 despite sufficient indication of its culpability. This work aims to establish the role of aerosol dispersion of SARS- Cov-2 virus and similar airborne pathogens on the spread of the disease in enclosed spaces. A steady-state fluid solver is used to simulate the air flow field, which is then used to compute the dispersion of SARS-Cov-2 and spatial probability distribution of infection inside two representative classrooms. In particular, the dependence of the turbulent diffusivity of the passive scalar on the air changes per hour and the number of inlet ducts has been given due consideration. By mimicking the presence of several humans in an enclosed space with a time-periodic inhalation–exhalation cycle, this study firmly establishes breathing as a major contributor in the spread of the pathogen, especially by superspreaders. Second, a spatial gradient of pathogen concentration is established inside the domain, which strongly refutes the well-mixed theory. Furthermore, higher ventilation rates and proximity of the infected person to the inlet and exhaust vents play an important role in determining the spread of the pathogen. In the case of classrooms, a ventilation rate equivalent to 9 air changes or more is recommended. The simulations show that the “one-meter distance rule” between the occupants can significantly reduce the risk of spreading infection by a high-emitter.

Resources cited in this publication

1H. Lu, C. W. Stratton, and Y. W. Tang, “Outbreak of Pneumonia of unknown etiology in Wuhan, China: The mystery and the miracle,” J. Med. Virol. 92(4), 401–402 (2020).
2See https://www.worldometers.infor/coronavirus/ for “WorldoMeter.”
3J. A. Lednicky, M. Lauzard, Z. H. Fan, A. Jutla, T. B. Tilly, M. Gangwar, M. Usmani, S. N. Shankar, K. Mohamed, A. Eiguren-Fernandez, C. J. Stephenson, Md. Mahbubul Alam, M. A. Elbadry, J. C. Loeb, K. Subramaniam, T. B. Waltzek, K. Cherabuddi, J. Glenn Morris Jr., and C. Y. Wu, “Viable SARS- CoV-2 in the air of a hospital room with COVID-19 patients,” Int. J. Infect.
Dis. 100, 476–482 (2020).
4L. Morawska and J. Cao, “Airborne transmission of SARS COV-2: The world
should face the reality,” Environ. Int. 139, 105730 (2020).
5M. Jayaweera, H. Perera, B. Gunawardana, and J. Manatunge, “Transmission
of COVID-19 virus by droplets and aerosols: A critical review on the unre-
solved dichotomy,” Environ. Res. 188, 109819 (2020).
6M. Z. Bazant and J. W. M. Bush, “A guideline to limit indoor airborne trans-
mission of COVID-19,” Proc. Natl. Acad. Sci. U. S. A. 118(17), e2018995118
7World Health Organisation, see
10665/112656/9789241507134_eng.pdf?sequence1⁄41 for “Infection Prevention and Control of Epidemic- and Pandemic-Prone Acute Respiratory Infections in Health Care (2014).
8W. F. Wells, “ON AIR-borne infection: Study II. Droplets and droplet nuclei,” Am. J. Epidemiol. 20(3), 611–618 (1934).
9J. P. Duguid, “The size and the duration of air-carriage of respiratory droplets and droplet-nuclei,” Epidemiol. Infect. 44(6), 471–479 (1946).
10R. Dhand and J. Li, “Coughs and sneezes: Their role in transmission of respira- tory viral infections, Including SARS CoV-2,” Am. J. Respir. Crit. Care Med. 202(5), 651–659 (2020).
11R. S. Papineni and F. S. Rosenthal, “The size distribution of droplets in the exhaled breath of healthy human subjects,” J. Aerosol Med. 10(2), 105–116 (1997).
12L. Morawska, G. R. Johnson, Z. D. Ristovski, M. Hargreaves, K. Mengersen, S. Corbett, C. Y. H. Chao, Y. Li, and D. Katoshevski, “Size distribution and sites of origin of droplets expelled from the human respiratory tract during expiratory activities,” J. Aerosol Sci. 40(3), 256–269 (2009).
13X. Xie, Y. Li, A. T. Y. Chwang, P. L. Ho, and W. H. Seto, “How far droplets can move in indoor environments–revisiting the Wells evaporation-falling curve,” Indoor Air 17(3), 211–225 (2007).
14R. Mittal, R. Ni, and J. H. Seo, “The flow physics of COVID-19,” J. Fluid Mech. 894, F2 (2020).
15S. A. Chillon, A. Ugarte-Anero, I. Aramendia Iradi, U. Fernandez-Gamiz, and E. Zulueta, “Numerical modelling of the spread of cough saliva droplets in a calm confined space,” Mathematics 9(5), 574 (2021).
16T. Dbouk and D. Drikakis, “On coughing and airborne droplet transmission to humans,” Phys. Fluids 32(5), 053310 (2020).
17M. Rezaali and R. Fouladi-Fard, “Aerosolized SARS-CoV-2 exposure assess- ment: Dispersion modelling with AERMOD,” J. Environ. Health Sci. Eng. 19(1), 285–293 (2021).
18L. Bourouiba, E. Dehandschoewercker, and J. W. M. Bush, “Violent expiratory events: On coughing and sneezing,” J. Fluid Mech. 745, 537–563 (2014).
19L. Bourouiba, “Turbulent gas clouds and respiratory pathogen emissions: Potential implications for reducing transmission of COVID-91,” JAMA 323(18), 1837–1838 (2020).

20L. Bourouiba, “The fluid dynamics of disease transmission,” Annu. Rev. Fluid Mech. 53, 473–508 (2021).
21L. Borro, L. Mazzei, M. Raponi, P. Piscitelli, A. Miani, and A. Secinaro, “The role of air conditioning in the diffusion of Sars-CoV-2 in indoor environments: A first computational fluid dynamic model, based on investigations performed at the Vatican State Children’s hospital,” Environ. Res. 193, 110343 (2021).
22Y. Zhang, G. Feng, Z. Kang, Y. Bi, and Y. Cai, “Numerical simulation of 23coughed droplets in conference room,” Procedia Eng. 205, 302–308 (2017).
M. R. Pendar and J. Carlos Pascoa, “Numerical modelling of the distribution of
virus carrying saliva droplets during sneeze and cough,” Phys. Fluids 32(8), 24083305 (2020).
A. A. Aliabadi, S. N. Rogak, S. I. Green, and K. H. Bartlett, “CFD simulation of human coughs and sneezes: A study in droplet dispersion, heat, and mass transfer,” in ASME International Mechanical Engineering Congress and Exposition (ASME, 2010), pp. 1051–1060.
25H. Li, F. W. Leong, G. Xu, Z. Ge, C. W. Kang, and K. H. Lim, “Dispersion of evaporating cough droplets in tropical outdoor environment,” Phys. Fluids 32(11), 113301 (2020).
26N. Van Doremalen, T. Bushmaker, D. H. Morris, M. G. Holbrook, A. Gamble, B. N. Williamson, A. Tamin, J. L. Harcourt, N. J. Thornburg, S. I. Gerber, J. O. Lloyd- Smith, E. de Wit, and V. J. Munster, “Aerosol and surface stability of SARS-CoV-2 as compared with SARS-CoV-1,” N. Engl. J. Med. 382(16), 1564–1567 (2020).
27N. R. de Sousa, L. Steponaviciute, L. Margerie, K. Nissen, M. Kjellin, B. Reinius, E. Salaneck, K. I. Udekwu, and A. G. Rothfuchs, “Detection and isolation of air- borne SARS-CoV-2 in a hospital setting,” Indoor Air 32(3), e13023 (2022).
28C. F. Picard, L. C. R. Salis, and M. Abadie, “Home quarantine: A numerical evaluation of SARS-CoV-2 spread in a single-family house,” Indoor Air 32(5), e13035 (2022).
29K. Sinha, M. S. Yadav, U. Verma, J. S. Muralidharan, and V. Kumar, “Effect of recirculation zones on the ventilation of a public washroom,” Phys. Fluids 33(11), 117101 (2021).
30A. Venkatram and J. Weil, “Modelling turbulent transport of aerosols inside rooms using eddy diffusivity,” Indoor Air 31(6), 1886–1895 (2021).
31S. L. Miller, W. W. Nazaroff, J. L. Jimenez, A. Boerstra, G. Buonanno, S. J. Dancer, J. Kurnitski, L. C. Marr, L. Morawska, and C. Noakes, “Transmission of SARS-CoV-2 by inhalation of respiratory aerosol in the Skagit Valley Chorale superspreading event,” Indoor Air 31(2), 314–323 (2021).
32J. Yan, M. Grantham, J. Pantelic, P. De Mesquita, B. Albert, F. Liu, and E. S. D. Milton, and E. Consortium, “Infectious virus in exhaled breath of symptomatic seasonal influenza cases from a college community,” Proc. Natl. Acad. Sci. U. S. A. 115(5), 1081–1086 (2018).
33G. R. Johnson and L. Morawska, “The mechanism of the breath aerosol for- mation,” J. Aerosol Med. Pulm. Drug Delivery 22(3), 229–237 (2009).
34J. Fiegel, R. Clarke, and D. Edwards, “Airborne infectious disease and the suppres- sion of pulmonary bioaerosols,” Drug Discovery Today 11(1–2), 51–57 (2006).
35M. Atkinson and L. Wein, “Quantifying the routes of transmission for pan- demic influenza,” Bull. Math. Biol. 70(3), 820–867 (2008).
36R. Zhang, Y. Li, A. Zhang, Y. Wang, and M. Molina, “Identifying airborne transmission as the dominant route for the spread of COVID-19,” Proc. Natl. Acad. Sci. U. S. A. 117(2), 14857–14863 (2020).
37S. Asadi, A. Wexler, C. Cappa, S. Barreda, N. Bouvier, and W. Ristenpart, “Aerosol emission and superemission during human speech increase with voice loudness,” Sci. Rep. 9(1), 2348 (2019).
38J. Gralton, E. Tovey, M. McLaws, and W. Rawlinson, “The role of particle size in aerosolised pathogen transmission: A review,” J. Infection 62(1), 1–13 (2011).
39R. Mittal, C. Meneveau, and W. Wu, “A mathematical framework for estimat- ing risk of airborne transmission of COVID-19 with application to face mask use and social distancing,” Phys. Fluids 32(10), 101903 (2020).
40G. Buonanno, L. Stabile, and L. Morawska, “Estimation of airborne viral emis- sion: Quanta emission rate of SARS-CoV-2 for infection risk assessment,” Environ. Int. 141, 105794 (2020).
41H. Hanzawa, A. K. Melikov, and P. O. Fanger, “Airflow characteristics in the occupied zone of ventilated spaces,” in ASHRAE Transactions: Technical and Symposium Papers Presented at the 1987 Winter Meeting (ASHRAE, 1987), Vol. 93, No. 1, pp. 524–539.

42Y. Xia, J. Niu, R. Zhao, and J. Burnett, “Effects of turbulent air on human ther- mal sensations in a warm isothermal environment,” Indoor Air 10(4), 289–296 (2000).

43G. Johnson, L. Morawska, Z. Ristovski, M. Hargreaves, K. Mengersen, C. Chao, M. Wan, Y. Li, X. Xie, D. Katoshevski, and S. Corbett, “Modality of human expired aerosol size distributions,” J. Aerosol Sci. 42(12), 839–851 (2011).

44S. Pope, Turbulent Flows (Cambridge University Press, New Delhi, 2000).
45T. Hussein, J. L€ondahl, S. Thuresson, M. Alsved, A. Al-Hunaiti, K. Saksela, H. Aqel, H. Junninen, A. Mahura, and M. Kulmala, “Indoor model simulation for COVID-19 transport and exposure,” Int. J. Environ. Res. Public Health 18(6),

2927 (2021).
46S. Karimzadeh, R. Bhopal, and H. Tien, “Review of infective dose, routes of

transmission and outcome of COVID-19 caused by the SARS-COV-2:

Comparison with other respiratory viruses,” Epidemiol. Infect. 149, e96 (2021). 47M. Riediker and D. Tsai, “Estimation of viral aerosol emissions from simulated individuals with asymptomatic to moderate coronavirus disease 2019,” JAMA

Network Open 3(7), e2013807 (2020).
48J. Ma, X. Qi, and H. Chen, “COVID-19 patients in earlier stages exhaled mil-

lions of SARS-CoV-2 per hour,” Clin. Infect. Dis. 72(10), e652–e654 (2020). 49M. Malik, A. C. Kunze, T. Bahmer, S. Herget-Rosenthal, and T. Kunze, “SARS- CoV-2: Viral loads of exhaled breath and oronasopharyngeal specimens in hospitalized patients with COVID-19,” Int. J. Infect. Dis. 110, 105–110

50R. W€olfel, V. Corman, W. Guggemos, M. Seilmaier, S. Zange, M. Mu€ller, D.

Niemeyer, T. Jones, P. Vollmar, C. Rothe, and M. Hoelscher, “Virological assessment of hospitalized patients with COVID-2019,” Nature 581(7809), 465–469 (2020).

51Y. Pan, D. Zhang, P. Yang, L. Poon, and Q. Wang, “Viral load of SARS-CoV-2 in clinical samples,” Lancet Infect. Dis. 20(4), 411–412 (2020).

52K.K.W.To,O.T.Y.Tsang,W.S.Leung,A.R.Tam,T.C.Wu,D.C.Lung,C. C. Y. Yip, J. P. Cai, J. M. C. Chan, T. S. H. Chik, and D. P. L. Lau, “Temporal profiles of viral load in posterior oropharyngeal saliva samples and serum anti- body responses during infection by SARS-CoV-2: An observational cohort study,” Lancet Infect. Dis. 20(5), 565–574 (2020).

53T. Foat, J. Drodge, J. Nally, and S. Parker, “A relationship for the diffusion coefficient in eddy diffusion based indoor dispersion modelling,” Build. Environ. 169, 10659 (2020).

54A. Prasad and J. Koseff, “Reynolds number and end-wall effects on a lid-driven cavity flow,” Phys. Fluids A 1(2), 208–218 (1989).

55P. Shankar and M. Deshpande, “Fluid mechanics in the driven cavity,” Annu. Rev. Fluid Mech. 32(1), 93–136 (2000).

56J. Wang and D. Wan, “Parallel simulation of 3D lid driven cubical cavity flows using finite element analysis,” in Proceedings of the Twenty First International Offshore and Polar Engineering Conference, 2011.

57E. Leriche and S. Gavrilakis, “Direct numerical simulation of the flow in a lid- driven cubical cavity,” Phys. Fluids 12(6), 1363–1376 (1989).

58E. Leriche, “Direct numerical simulation in a lid driven cubical cavity at high Reynolds number by a Chebyshev spectral method,” J. Sci. Comput. 27(1–3), 335–345 (2006).

59R. Zhang, C. Zhong, S. Liu, and C. Zhuo, “Large-eddy simulation of wall bounded turbulent flow with high order discreet unified gas kinetic scheme,” Adv. Aerodyn. 2, 1–27 (2020).

60R. Bouffanais, M. Deville, and E. Leriche, “Large-eddy simulation of the flow in a lid driven cubical cavity,” Phys. Fluids 19, 055108 (2007).

61See ity/ for information about air inhaled during a normal breath.

62L. Warliah, A. Rohman, and P. Rusmin, “Model development of air volume and breathing frequency in human respiratory system simulation,” Procedia Social Behav. Sci. 67, 260–268 (2011).

63J. Gupta, C. Lin, and Q. Chen, “Characterizing exhaled airflow from breathing and talking,” Indoor Air 20(1), 31–39 (2010).

64V. Arumuru, J. Pasa, S. Samantaray, and V. Varma, “Breathing, virus transmis- sion, and social distancing—An experimental visualization study,” AIP Adv. 11(4), 045205 (2021).

65C. Noakes, C. Beggs, P. Sleigh, and K. Kerr, “Modelling the transmission of air- borne infections in enclosed spaces,” Epidemiol. Infect. 134(5), 1082–1091 (2006). 66See for “Guidance for the Re-opening of Schools, ASHRAE (2020)” (last accessed August 20, 2020).

Leave a Reply

Subscribe to Comments RSS feed